Every conformal field theory has the symmetry of taking each field to its adjoint. We consider here the quotient (orbifold) conformal field theory obtained by twisting with respect to this symmetry. A general method for computing such quotients is developed using the Coulomb gas representation. Examples of parafermions, S U ( 2 ) current algebra and the N = 2 minimal models are described explicitly. The partition functions and the dimensions of the disordered fields are given. This result is a tool for finding new theories. For instance, it is of importance in analyzing the conformal field theories of exceptional holonomy manifolds
Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski ...
23 pages, 12 figures, LateX. To appear in MATHPHYS ODYSSEY 2001 --Integrable Models and Beyond, ed. ...
A conformal field theory is a quantum field theory with extra symmetries (namely the conformal group...
International audienceEvery conformal field theory has the symmetry of taking each field to its adjo...
International audienceEvery conformal field theory has the symmetry of taking each field to its adjo...
Modern development of conformal field theory in two dimensions and its applications to critical phen...
We investigate second order conformal perturbation theory for Z(2) orbifolds of conformal field theo...
In the first part of this work we generalize the standard b-c model to accommodate for rational valu...
SIGLEAvailable from British Library Document Supply Centre- DSC:9106.16(CU-DAMTP--95-42) / BLDSC - B...
Topological phases of matter in (2+1) dimensions are commonly equipped with global symmetries, such ...
Topological phases of matter in (2+1) dimensions are commonly equipped with global symmetries, such ...
In this thesis, conformal transformations in d and two dimensions and the results of conformal symme...
Starting with a conformal Quantum Field Theory on the real line, we show that the dual net is still ...
We study some aspects of 2D supersymmetric sigma models on orbifolds. It turns out that independentl...
We use the formalism of strange correlators to construct a critical classical lattice model in two d...
Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski ...
23 pages, 12 figures, LateX. To appear in MATHPHYS ODYSSEY 2001 --Integrable Models and Beyond, ed. ...
A conformal field theory is a quantum field theory with extra symmetries (namely the conformal group...
International audienceEvery conformal field theory has the symmetry of taking each field to its adjo...
International audienceEvery conformal field theory has the symmetry of taking each field to its adjo...
Modern development of conformal field theory in two dimensions and its applications to critical phen...
We investigate second order conformal perturbation theory for Z(2) orbifolds of conformal field theo...
In the first part of this work we generalize the standard b-c model to accommodate for rational valu...
SIGLEAvailable from British Library Document Supply Centre- DSC:9106.16(CU-DAMTP--95-42) / BLDSC - B...
Topological phases of matter in (2+1) dimensions are commonly equipped with global symmetries, such ...
Topological phases of matter in (2+1) dimensions are commonly equipped with global symmetries, such ...
In this thesis, conformal transformations in d and two dimensions and the results of conformal symme...
Starting with a conformal Quantum Field Theory on the real line, we show that the dual net is still ...
We study some aspects of 2D supersymmetric sigma models on orbifolds. It turns out that independentl...
We use the formalism of strange correlators to construct a critical classical lattice model in two d...
Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski ...
23 pages, 12 figures, LateX. To appear in MATHPHYS ODYSSEY 2001 --Integrable Models and Beyond, ed. ...
A conformal field theory is a quantum field theory with extra symmetries (namely the conformal group...