Overexploitation of groundwater resources has caused groundwater-related problems all over the world. Effective groundwater governance is a favorable guarantee for its protection and sustainable utilization. Accurate prediction of groundwater level (GWL) or depth to groundwater (GWD) plays an important role in groundwater resource management. Due to the limitations and complexity of numerical models, this study aims to develop surrogate models that can dually control the GWL (or GWD) and groundwater quantity (GWQ) in each district of the Beijing Plain, China, using the methods of multiple linear regression (MLR) and back propagation artificial neural network (BP-ANN). This study used 180 monthly GWD data records, including the first 168 dat...