Satellite-derived estimates of precipitation are essential to compensate for missing rainfall measurements in regions where the homogeneous and continuous monitoring of rainfall remains challenging due to low density rain gauge networks. The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Climate Data Record (PERSIANN-CDR) is a relatively new product (released in 2013) but that contains data since 1983, thus enabling long-term rainfall analysis. In this work, we used three decades (1983–2014) of PERSIANN-CDR daily rainfall data to characterize precipitation patterns in the southern part of the Amazon basin, which has been drastically impacted in recent decades by anthropogenic activities that exace...