In order to improve the flexibility of curves, a new five-point binary approximating subdivision scheme with two parameters is presented. The generating polynomial method is used to investigate the uniform convergence and C k -continuity of this scheme. In a special case, the five-point scheme changes into a four-point scheme, which can generate C 3 limit curves. The shape-preserving properties of the four-point scheme are analyzed, and a few examples are given to illustrate the efficiency and the shape-preserving effect of this special case
The paper suggests conditions for preserving the shape prop-erties of the original data using the te...
AbstractIn this paper a combined approximating and interpolating subdivision scheme is presented. Th...
. For a wide class of stationary subdivision methods, we derive necessary and sufficient conditions...
AbstractA binary 4-point approximating subdivision scheme, presented by Siddiqi and Ahmad (2006) [9]...
ABSTRACT. In this work, we introduce a new quatnary approximating subdivision scheme for curve and d...
AbstractThe approximating subdivision scheme, recently developed by Shahid S. Siddiqi and Nadeem Ahm...
The four-point subdivision scheme is well known as an interpolating subdivision scheme, but it has r...
A unique binary four-point approximating subdivision scheme has been developed in which one part of ...
A new 4-point C3 quaternary approximating subdivision scheme with one shape parameter is proposed an...
Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this p...
AbstractStarting from a well-known construction of polynomial-based interpolatory 4-point schemes, i...
AbstractA new three-point approximating subdivision scheme is presented which generates C2 curves. I...
In this paper we provide the conditions that the free parameter of the interpolating 5-point ternary...
This paper presents 6-point subdivision schemes with cubic precision. We first derive a relation bet...
In this article, we present a new method to construct a family of 2N+2-point binary subdivision sche...
The paper suggests conditions for preserving the shape prop-erties of the original data using the te...
AbstractIn this paper a combined approximating and interpolating subdivision scheme is presented. Th...
. For a wide class of stationary subdivision methods, we derive necessary and sufficient conditions...
AbstractA binary 4-point approximating subdivision scheme, presented by Siddiqi and Ahmad (2006) [9]...
ABSTRACT. In this work, we introduce a new quatnary approximating subdivision scheme for curve and d...
AbstractThe approximating subdivision scheme, recently developed by Shahid S. Siddiqi and Nadeem Ahm...
The four-point subdivision scheme is well known as an interpolating subdivision scheme, but it has r...
A unique binary four-point approximating subdivision scheme has been developed in which one part of ...
A new 4-point C3 quaternary approximating subdivision scheme with one shape parameter is proposed an...
Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this p...
AbstractStarting from a well-known construction of polynomial-based interpolatory 4-point schemes, i...
AbstractA new three-point approximating subdivision scheme is presented which generates C2 curves. I...
In this paper we provide the conditions that the free parameter of the interpolating 5-point ternary...
This paper presents 6-point subdivision schemes with cubic precision. We first derive a relation bet...
In this article, we present a new method to construct a family of 2N+2-point binary subdivision sche...
The paper suggests conditions for preserving the shape prop-erties of the original data using the te...
AbstractIn this paper a combined approximating and interpolating subdivision scheme is presented. Th...
. For a wide class of stationary subdivision methods, we derive necessary and sufficient conditions...