This paper starts with an explanation of how the logicist research program can be approached within the framework of Leśniewski’s systems. One nice feature of the system is that Hume’s Principle is derivable in it from an explicit definition of natural numbers. I generalize this result to show that all predicative abstraction principles corresponding to second-level relations, which are provably equivalence relations, are provable. However, the system fails, despite being much neater than the construction of Principia Mathematica (PM). One of the key reasons is that, just as in the case of the system of PM, without the assumption that infinitely many objects exist, (renderings of) most of the standard axioms of Peano Arithmetic are not deri...