Piezocrystals, especially the relaxor-based ferroelectric crystals, have been subject to intense investigation and development within the past three decades, motivated by the performance advantages offered by their ultrahigh piezoelectric coefficients and higher electromechanical coupling coefficients than piezoceramics. Structural anisotropy of piezocrystals also provides opportunities for devices to operate in novel vibration modes, such as the d36 face shear mode, with domain engineering and special crystal cuts. These piezocrystal characteristics contribute to their potential usage in a wide range of low- and high-power ultrasound applications. In such applications, conventional piezoelectric materials are presently subject to varying m...