The mechanical behavior of the adhesive interface between the fiber-reinforced polymer (FRP) strip and the concrete substrate often controls the response of FRP-strengthened reinforced concrete (RC) members. Plenty of studies devoted to understanding the mechanical behavior of FRP strips glued to concrete are currently available in the scientific literature. However, they are mainly focused on the response under monotonic actions, which is certainly relevant in a wide class of practical applications. Conversely, few contributions are currently available to better understand the response of FRP-to-concrete interfaces under cyclic actions, such as those deriving from either seismic excitations or traffic loads. This paper presents a unified n...