Das Ziel dieser Arbeit ist die Erstellung einer Reinforcement Learning Umgebung für einen Quadruped-Roboter. Der Roboter soll dabei innerhalb einer physikalisch simulierten Umgebung ein Bewegungsmuster zur Fortbewegung und Navigieren auf einen zufälligen Zielpunkt erlernen. Dazu wird mittels des Robotik-Frameworks ROS und der Simulationssoftware Gazebo ein Robotermodell innerhalb einer physikalischen Simulationsumgebung erstellt. Zum Erstellen der Reinforcement Learning Umgebung wird das Framework OpenAI Gym und das Zusatzpaket Openai_ros verwendet. Zum Erlernen des Bewegungsmusters wird das DQN-Lernalgorithmus verbunden mit Verbesserungsmethoden des Experience Replay Buffers und des Target Networks verwendet. Das erstellte DQN-Netzwerk wir...
International audienceA simulation framework based on the open-source robotic software Gazebo and th...
Quadruped robots offer distinct advantages in navigating challenging terrains due to their flexible ...
In recent years, deep reinforcement learning has increasingly contributed to the development of robo...
The Ph.D. thesis is focused on using the reinforcement learning for four legged robot control. The m...
Ambulation is a valuable form of locomotion for robots which must operate in spaces designed for hum...
Die Untersuchung von Belohnungsfunktionen für Laufroboter liefert einen Beitrag, um die Leistungsfäh...
We present a new reinforcement learning system more suitable to be used in robotics than existing on...
The field of reinforcement learning, developed during the nineteen-eighties and nineties, is a branc...
The increment of dependant people for the realization of Activities of Daily Living is a fact that c...
Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) methods are a promising approach t...
Reinforcement learning (RL) algorithms have successfully learned control policies for quadruped loco...
The ability to form support contacts at discontinuous locations makes legged robots suitable for loc...
Peer reviewed: TruePublication status: PublishedAnimals have evolved to adapt to complex and uncerta...
Tato práce se zabývá využitím posilovaného učení pro pohyb robota v simulovaném fyzikálním prostředí...
Building controllers for legged robots with agility and intelligence has been one of the typical cha...
International audienceA simulation framework based on the open-source robotic software Gazebo and th...
Quadruped robots offer distinct advantages in navigating challenging terrains due to their flexible ...
In recent years, deep reinforcement learning has increasingly contributed to the development of robo...
The Ph.D. thesis is focused on using the reinforcement learning for four legged robot control. The m...
Ambulation is a valuable form of locomotion for robots which must operate in spaces designed for hum...
Die Untersuchung von Belohnungsfunktionen für Laufroboter liefert einen Beitrag, um die Leistungsfäh...
We present a new reinforcement learning system more suitable to be used in robotics than existing on...
The field of reinforcement learning, developed during the nineteen-eighties and nineties, is a branc...
The increment of dependant people for the realization of Activities of Daily Living is a fact that c...
Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) methods are a promising approach t...
Reinforcement learning (RL) algorithms have successfully learned control policies for quadruped loco...
The ability to form support contacts at discontinuous locations makes legged robots suitable for loc...
Peer reviewed: TruePublication status: PublishedAnimals have evolved to adapt to complex and uncerta...
Tato práce se zabývá využitím posilovaného učení pro pohyb robota v simulovaném fyzikálním prostředí...
Building controllers for legged robots with agility and intelligence has been one of the typical cha...
International audienceA simulation framework based on the open-source robotic software Gazebo and th...
Quadruped robots offer distinct advantages in navigating challenging terrains due to their flexible ...
In recent years, deep reinforcement learning has increasingly contributed to the development of robo...