Diese Arbeit umfasst die Modellierung, die Umsetzung und den Test eines Zustandssignals für einen Reinforcement Learning Agenten. Ziel ist es, so schnell, wie möglich, über eine Rennstrecke zu fahren, was mit der Suche nach einer optimalen Fahrspur verbunden ist. Mittel des Neural Fitted Q Iteration Algorithmus wird in einem kontinuierlichen Zustand- und Aktionsraum und ohne Modell der Umwelt Daten für die Q-Funktion gesammelt. Die Approximation dieser Funktion wird mit einem künstlichen neuronalen Netz umgesetzt.This work covers the development, the implementation and the test of a state signal for a Reinforcement Learning agent. The aim is to drive as fast as possible over a race circuit. That involves searching for an optimal racing line...
This doctoral thesis deals with the development of a function approximator and its application to m...
In this paper, the Reinforcement Learning problem is formulated equivalently to a Markov Decision Pr...
Reinforcement learning is an area of machine learning solving the problems that how to take actions ...
Diese Arbeit zeigt den Weg zur Umsetzung eines Agenten, der selbständig lernen soll, wie ein vorgege...
Self-learning controllers offer various strong benefits over conventional controllers, the most impo...
Diese Bachelorarbeit behandelt die Entwicklung und Optimierung eines selbständig lernenden Pacman-Ag...
Abstract — In this work, we propose an extension to the Neural Fitted Q-Iteration algorithm that uti...
Methods frequently used to solve control problems require the knowledge of relations between the sta...
In this work, a Nadaraya-Watson kernel based learning system which owns general regression neural ne...
International audienceWe present the results of a research aimed at improving the Q-learning method ...
This is the version of record. It originally appeared on arXiv at http://arxiv.org/abs/1603.00748.Mo...
Abstract. Q-learning can be used to learn a control policy that max-imises a scalar reward through i...
Q-learning can be used to find an optimal action-selection policy for any given finite Markov Decisi...
We address the problem of computing the optimal Q-function in Markov decision prob-lems with infinit...
Reinforcement learning is a popular machine learning paradigm which can find near optimal solutions ...
This doctoral thesis deals with the development of a function approximator and its application to m...
In this paper, the Reinforcement Learning problem is formulated equivalently to a Markov Decision Pr...
Reinforcement learning is an area of machine learning solving the problems that how to take actions ...
Diese Arbeit zeigt den Weg zur Umsetzung eines Agenten, der selbständig lernen soll, wie ein vorgege...
Self-learning controllers offer various strong benefits over conventional controllers, the most impo...
Diese Bachelorarbeit behandelt die Entwicklung und Optimierung eines selbständig lernenden Pacman-Ag...
Abstract — In this work, we propose an extension to the Neural Fitted Q-Iteration algorithm that uti...
Methods frequently used to solve control problems require the knowledge of relations between the sta...
In this work, a Nadaraya-Watson kernel based learning system which owns general regression neural ne...
International audienceWe present the results of a research aimed at improving the Q-learning method ...
This is the version of record. It originally appeared on arXiv at http://arxiv.org/abs/1603.00748.Mo...
Abstract. Q-learning can be used to learn a control policy that max-imises a scalar reward through i...
Q-learning can be used to find an optimal action-selection policy for any given finite Markov Decisi...
We address the problem of computing the optimal Q-function in Markov decision prob-lems with infinit...
Reinforcement learning is a popular machine learning paradigm which can find near optimal solutions ...
This doctoral thesis deals with the development of a function approximator and its application to m...
In this paper, the Reinforcement Learning problem is formulated equivalently to a Markov Decision Pr...
Reinforcement learning is an area of machine learning solving the problems that how to take actions ...