We present a Gagliardo-Nirenberg inequality which bounds Lorentz norms of a function by Sobolev norms and homogeneous Besov quasinorms with negative smoothness. We prove also other versions involving Besov or Triebel-Lizorkin quasinorms. These inequalities can be considered as refinements of Sobolev type embeddings. They can also be applied to obtain Gagliardo-Nirenberg inequalities in some limiting cases. Our methods are based on estimates of rearrangements in terms of heat kernels. These methods enable us to cover also the case of Sobolev norms with p = 1. © 2014 Springer Science+Business Media New York
We consider the inequalities of Gagliardo\u2013Nirenberg and Sobolev in Rd, formulated in terms of t...
We investigate the spaces of functions on n for which the generalized partial derivatives D k rk f ...
This thesis studies the generalization of improved Gagliardo Nirenberg inequalities on stratified Li...
We prove a family of Sobolev inequalities of the form ∥u∥Lnn−1,1(Rn,V)≤∥A(D)u∥L1(Rn,E) where A(D):C∞...
The classical Gagliardo–Nirenberg interpolation inequality is a well-known estimate which gives, in ...
The classical Gagliardo–Nirenberg interpolation inequality is a well-known estimate which gives, in ...
The $L^1$-Sobolev inequality states that for compactly supported functions $u$ on the Euclidean $n$...
Abstract. We prove Gagliardo-Nirenberg inequalities using certain new symmetrization inequalities. O...
In the cases where there is no Sobolev-type or Gagliardo-Nirenberg-type fractional estimate involvin...
This paper is devoted to improvements of functional inequalities based on scalings and written in te...
none1noIn this paper we investigate the quantitative stability for Gagliardo-Nirenberg- Sobolev ine...
none1noIn this paper we investigate the quantitative stability for Gagliardo-Nirenberg- Sobolev ine...
none1noIn this paper we investigate the quantitative stability for Gagliardo-Nirenberg- Sobolev ine...
Recently, the Sobolev and Gagliardo-Nirenberg inequalities have been sharpened and extended in diffe...
We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transp...
We consider the inequalities of Gagliardo\u2013Nirenberg and Sobolev in Rd, formulated in terms of t...
We investigate the spaces of functions on n for which the generalized partial derivatives D k rk f ...
This thesis studies the generalization of improved Gagliardo Nirenberg inequalities on stratified Li...
We prove a family of Sobolev inequalities of the form ∥u∥Lnn−1,1(Rn,V)≤∥A(D)u∥L1(Rn,E) where A(D):C∞...
The classical Gagliardo–Nirenberg interpolation inequality is a well-known estimate which gives, in ...
The classical Gagliardo–Nirenberg interpolation inequality is a well-known estimate which gives, in ...
The $L^1$-Sobolev inequality states that for compactly supported functions $u$ on the Euclidean $n$...
Abstract. We prove Gagliardo-Nirenberg inequalities using certain new symmetrization inequalities. O...
In the cases where there is no Sobolev-type or Gagliardo-Nirenberg-type fractional estimate involvin...
This paper is devoted to improvements of functional inequalities based on scalings and written in te...
none1noIn this paper we investigate the quantitative stability for Gagliardo-Nirenberg- Sobolev ine...
none1noIn this paper we investigate the quantitative stability for Gagliardo-Nirenberg- Sobolev ine...
none1noIn this paper we investigate the quantitative stability for Gagliardo-Nirenberg- Sobolev ine...
Recently, the Sobolev and Gagliardo-Nirenberg inequalities have been sharpened and extended in diffe...
We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transp...
We consider the inequalities of Gagliardo\u2013Nirenberg and Sobolev in Rd, formulated in terms of t...
We investigate the spaces of functions on n for which the generalized partial derivatives D k rk f ...
This thesis studies the generalization of improved Gagliardo Nirenberg inequalities on stratified Li...