In the classic longest common substring (LCS) problem, we are given two strings S and T, each of length at most n, over an alphabet of size σ, and we are asked to find a longest string occurring as a fragment of both S and T. Weiner, in his seminal paper that introduced the suffix tree, presented an O(nlog σ)-time algorithm for this problem [SWAT 1973]. For polynomially-bounded integer alphabets, the linear-time construction of suffix trees by Farach yielded an O(n)-time algorithm for the LCS problem [FOCS 1997]. However, for small alphabets, this is not necessarily optimal for the LCS problem in the word RAM model of computation, in which the strings can be stored in O(nlog σ/log n) space and read in O(nlog σ/log n) time. We show that, in ...