A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let $\kappa\u27(G)$ and $\delta(G)$ be the edge-connectivity and the minimum degree of a graph $G$, respectively. For integers $s \ge 0$ and $t \ge 0$, a graph $G$ is $(s,t)$-supereulerian if for any disjoint edge sets $X, Y \subseteq E(G)$ with $|X|\le s$ and $|Y|\le t$, $G$ has a spanning closed trail that contains $X$ and avoids $Y$. This dissertation is devoted to providing some results on $(s,t)$-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer $j(s,t)$ such that every $j(s,t)$-edge-...