Quantum computers have the potential to solve Quadratic Unconstrained Binary Optimization (QUBO) problems with lower computational complexity than classical ones. Considering the current limitations of quantum hardware, the joint use of classical and quantum paradigms could exploit both advantages. Quantum routines can make some complex tasks for classical computers feasible. For example, in the Grover Adaptive Search (GAS) procedure, the problem cost function is classically shifted iteratively, whenever a negative value is found through the quantum Grover Search (GS) algorithm, until the minimum is achieved. This quantum-classical approach is characterized by many degrees of freedom, e.g. the number of GS iterations in each call and the st...