This paper presents an information-theoretic approach to decentralized binary detection in sensor networks. In particular, we consider a Bayesian approach for the minimization of the probability of decision error. Two scenarios are considered: (i) a scenario where clusters are identical (uniform clustering) and (ii) a scenario where clusters are different (non-uniform clustering). The performance analysis obtained with a classical “communication-theoretic” approach is extended to the “information-theoretic” realm using the concept of mutual information. We then propose a simplified binary symmetric channel (BSC) model to analyze the clustered schemes, and we show that it allows to accurately predict their realistic performance. Our results ...