We consider a two-edge connected, non-negatively real-weighted graph G with n vertices and m edges, and a single-source shortest paths tree (SPT) of G rooted at an arbitrary vertex. If an edge of the SPT is temporarily removed, a widely recognized approach to reconnect the vertices disconnected from the root consists of joining the two resulting subtrees by means of a single non-tree edge, called a swap edge. This allows to reduce consistently the set-up and computational costs which are incurred if one instead rebuilds a new optimal SPT from scratch. In the past, several optimality criteria have been considered to select a best possible swap edge, and here we restrict our attention to arguably the two most significant measures: the minimiz...