A self-similar energy on finitely ramified fractals can be constructed starting from an eigenform, i.e., an eigenvector of a special operator defined on the fractal. In this paper, we prove two existence results for regular eigenforms that consequently are existence results for self-similar energies on finitely ramified fractals. The first result proves the existence of a regular eigenform for suitable weights on fractals, assuming only that the boundary cells are separated and the union of the interior cells is connected. This result improves previous results and applies to many finitely ramified fractals usually considered. The second result proves the existence of a regular eigenform in the general case of finitely ramified fractals in a...