We present the first general bounds on the mixing time of the Markov chain associated to the logit dynamics for wide classes of strategic games. The logit dynamics with inverse noise β describes the behavior of a complex system whose individual components act selfishly according to some partial (“noisy”) knowledge of the system, where the capacity of the agent to know the system and compute her best move is measured by parameter β. In particular, we prove nearly tight bounds for potential games and games with dominant strategies. Our results show that for potential games the mixing time is bounded by an exponential in β and in the maximum potential difference. Instead, for games with dominant strategies the mixing time cannot grow arbitrari...