Information Retrieval (IR) techniques have gained wide-spread acceptance as a method for automating traceability recovery. These techniques recover links between software artifacts based on their textual similarity, i.e., the higher the similarity, the higher the likelihood that there is a link between the two artifacts. A common problem with all IR-based techniques is filtering out noise from the list of candidate links, in order to improve the recovery accuracy. Indeed, software artifacts may be related in many ways and the textual information captures only one aspect of their relationships. In this paper we propose to leverage code ownership information to capture relationships between source code artifacts for improving the recovery of ...