Feature extraction is a crucial phase in complex computer vision systems. Mainly two different approaches have been proposed so far. A quite common solution is the design of appropriate filters and features based on image processing techniques, such as the SIFT descriptors. On the other hand, machine learning techniques can be applied, relying on their capabilities to automatically develop optimal processing schemes from a significant set of training examples. Recently, deep neural networks and convolutional neural networks have been shown to yield promising results in many computer vision tasks, such as object detection and recognition. This paper introduces a new computer vision deep architecture model for the hierarchical extraction of p...