Using simulations we study the phase behavior of a family of hard spherotetrahedra, a shape that interpolates between tetrahedra and spheres. We identify 13 close-packed structures, some with packings that are significantly denser than previously reported. Twelve of these are crystals with unit cells of N = 2 or N = 4 particles, but in the shape regime of slightly rounded tetrahedra we find that the densest structure is a quasicrystal approximant with a unit cell of N = 82 particles. All 13 structures are also stable below close packing, together with an additional 14th plastic crystal phase at the sphere side of the phase diagram, and upon sufficient dilution to packing fractions below 50-60% all structures melt. Interestingly, however, up...