Sparse approximation aims to fit a linear model in a least-squares sense, with a small number of non-zero components (the L0 “norm”). Due to its combinatorial nature, it is often addressed by suboptimal methods. It was recently shown, however, that exact resolution could be performed through a mixed integer program(MIP) reformulation solved by a generic solver, implementing branch-and-bound techniques. This thesis addresses the L0-norm sparse approximation problem with tailored branch-andbound resolution methods, exploiting the mathematical structures of the problem. First, we show that each node evaluation amounts to solving an L1-norm problem, for which we propose dedicated methods. Then, we build an efficient exploration strategy exploitin...