Le problème du filtrage appliqué au diagnostic automobile est étudié dans ce travail de thèse, pour les systèmes dynamiques linéaires ou nonlinéaires, à temps discret, en contexte d'incertitudes mixtes, c'est-à-dire que les incertitudes peuvent être stochastiques ou bornées (dans des intervalles). Ce contexte permet de combiner deux approches bien connues du filtrage : les approches stochastique et ensembliste. Au travers de cette thèse, nous montrons qu'elles se complètent plutôt qu'elles se concurrencent. Deux modèles issus de l'automobile sont utilisés dans les applications tout-au-long de la thèse. Il s'agit des modèles de véhicule à bicyclette et de suspension. Des méthodes mixtes de filtrage sont tout d'abord développées et présentées...