Cette thèse porte sur le problème de l'inférence en grande dimension.Nous proposons différentes méthodes pour l'estimation de constantes de normalisation et l'échantillonnage de distributions complexes.Dans une première partie, nous développons plusieurs méthodes de Monte Carlo par chaînes de Markov.D'une part, nous développons une nouvelle approche pour des noyaux non-réversibles. D'autre part, nous proposons deux méthodes massivement parallélisables combinant des propriétés locales et globales des méthodes de Monte Carlo par chaînes de Markov, en particulier en se basant sur un nouvel estimateur de constante de normalisation.Nous appliquons ces méthodes à une tâche d'inférence approchée de distribution emph{a posteriori} de réseaux de ne...
Variational Inference (VI) has become a popular technique to approximate difficult-to-compute poster...
The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coh...
The first part of this thesis concerns the inference of un-normalized statistical models. We study t...
This thesis addresses the problem of high dimensional inference.We propose different methods for est...
National audienceBayesian posterior distributions can be numerically intractable, even by the means ...
Automatic decision making and pattern recognition under uncertainty are difficult tasks that are ubi...
We propose a new class of learning algorithms that combines variational approximation and Markov cha...
La statistique bayésienne computationnelle construit des approximations de la distribution a posteri...
Variational inference is one of the tools that now lies at the heart of the modern data analysis lif...
Monte Carlo methods are are an ubiquitous tool in modern statistics. Under the Bayesian paradigm, th...
The availability of massive computational resources has led to a wide-spread application and develop...
Probabilistic inference is at the core of many recent advances in machine learning. Unfortunately, ...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
The central objective of this thesis is to develop new algorithms for inference in probabilistic gra...
This thesis lies in the field of Statistical Inference and more precisely in Bayesian Inference, whe...
Variational Inference (VI) has become a popular technique to approximate difficult-to-compute poster...
The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coh...
The first part of this thesis concerns the inference of un-normalized statistical models. We study t...
This thesis addresses the problem of high dimensional inference.We propose different methods for est...
National audienceBayesian posterior distributions can be numerically intractable, even by the means ...
Automatic decision making and pattern recognition under uncertainty are difficult tasks that are ubi...
We propose a new class of learning algorithms that combines variational approximation and Markov cha...
La statistique bayésienne computationnelle construit des approximations de la distribution a posteri...
Variational inference is one of the tools that now lies at the heart of the modern data analysis lif...
Monte Carlo methods are are an ubiquitous tool in modern statistics. Under the Bayesian paradigm, th...
The availability of massive computational resources has led to a wide-spread application and develop...
Probabilistic inference is at the core of many recent advances in machine learning. Unfortunately, ...
La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hauteme...
The central objective of this thesis is to develop new algorithms for inference in probabilistic gra...
This thesis lies in the field of Statistical Inference and more precisely in Bayesian Inference, whe...
Variational Inference (VI) has become a popular technique to approximate difficult-to-compute poster...
The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coh...
The first part of this thesis concerns the inference of un-normalized statistical models. We study t...