Strojno učenje ima mogućnost promijeniti paradigmu izračuna svojstava kompleksnih molekula i kristala. Dosadašnje precizne metode bazirane na teoriji funkcionala gustoće su računalno preskupe za složene zadatke kao što je predviđanje kristalnih struktura. U ovom radu je dan pregled primjene suvremenih metoda strojnog kao i dubokog učenja na problem određivanja interatomskih potencijala i sila. Osim toga, testiran je prijašnji strojno naučeni potencijal na strukturama sedmog slijepog testa predviđanja kristalnih struktura te su mu prijenosnim učenjem značajno popravljene performanse.Machine learning has the ability to change the paradigm of calculating the properties of complex molecules and crystals. Previous precise methods based on densit...
Abstract: Interatomic potential models based on machine learning (ML) are rapidly developing as tool...
Machine learning interatomic potentials (ML-IPs) have emerged as a promising approach for bridging t...
Deep learning consists of deep convolutional layers and an unsupervised feature selection phase. The...
Strojno učenje ima mogućnost promijeniti paradigmu izračuna svojstava kompleksnih molekula i kristal...
Teorija funkcionala gustoće (DFT) najraširenija je metoda za računanje svojstava materijala, no za s...
The computational prediction and analysis of crystal structures is a vital aspect of materials scien...
Za modeliranje materijala iz prvih principa danas se predominantno koristi teorija funkcionala gusto...
Understanding materials dynamics under extreme conditions of pressure, temperature, and strain rate ...
Atomic-scale modeling and understanding of materials have made remarkable progress, but they are sti...
This thesis deals with discussions on the motivation and approach for discovering new interatomic po...
<p>Total energies of crystal structures can be calculated to high precision using quantum-based dens...
Molecular simulations allow to investigate the behaviour of materials at the atomistic level, sheddi...
Machine learning of the quantitative relationship between local environment descriptors and the pote...
Abstract Decades of advancements in strategies for the calculation of atomic interactio...
Neuronske mre že se nameću kao vrlo vrijedan alat u znanosti zbog svoje mogućnosti uočavanja uzorka ...
Abstract: Interatomic potential models based on machine learning (ML) are rapidly developing as tool...
Machine learning interatomic potentials (ML-IPs) have emerged as a promising approach for bridging t...
Deep learning consists of deep convolutional layers and an unsupervised feature selection phase. The...
Strojno učenje ima mogućnost promijeniti paradigmu izračuna svojstava kompleksnih molekula i kristal...
Teorija funkcionala gustoće (DFT) najraširenija je metoda za računanje svojstava materijala, no za s...
The computational prediction and analysis of crystal structures is a vital aspect of materials scien...
Za modeliranje materijala iz prvih principa danas se predominantno koristi teorija funkcionala gusto...
Understanding materials dynamics under extreme conditions of pressure, temperature, and strain rate ...
Atomic-scale modeling and understanding of materials have made remarkable progress, but they are sti...
This thesis deals with discussions on the motivation and approach for discovering new interatomic po...
<p>Total energies of crystal structures can be calculated to high precision using quantum-based dens...
Molecular simulations allow to investigate the behaviour of materials at the atomistic level, sheddi...
Machine learning of the quantitative relationship between local environment descriptors and the pote...
Abstract Decades of advancements in strategies for the calculation of atomic interactio...
Neuronske mre že se nameću kao vrlo vrijedan alat u znanosti zbog svoje mogućnosti uočavanja uzorka ...
Abstract: Interatomic potential models based on machine learning (ML) are rapidly developing as tool...
Machine learning interatomic potentials (ML-IPs) have emerged as a promising approach for bridging t...
Deep learning consists of deep convolutional layers and an unsupervised feature selection phase. The...