We present a method to obtain the individual charge-state-dependent kinetic-energy distributions of tin ions emanating from a laser-produced plasma from their joint overlapping energy distributions measured by means of a retarding field energy analyzer (RFA). The method of extracting charge state specific parameters from the ion signals is described mathematically, and reinforced with experimental results. The absolute charge-state-resolved ion energy distributions is obtained from ns-pulse Nd:YAG-laser-produced microdroplet tin plasmas in a setting relevant for state-of-the-art extreme ultraviolet nanolithography.</p