Sei G(n) ein n-dimensionales (Punkt-) Gitter im n-dimensionalen euklidischen Raum und Q(n) ein n-dimensionaler nullpunktsymmetrischer Quader in G(n), in dessen Innern keine nichttrivialen Gitterpunkte aus G(n) liegen. Der Gitterpunktsatz von Minkowski gibt das maximale das Volumen eines solchen Quaders Q(n) in Abhaengigkeit der Gitterdeterminante von G(n) vor. In dieser Arbeit wird fuer die Dimensionen 2 und 3 die Konstruktion von Minkowski-Quadern mit dem maximalen Volumen erarbeitet und Eigenschaften bezueglich der Achsenverhaeltnisse und der Anzahl nichttrivialer Gitterpunkte auf dem Rand derartiger Quader dargestellt. Des weiteren werden solche Untersuchungen im 2-dimensionalen fuer Quader mit einer gewissen Anzahl nichttrivialer innere...
Let K = (K{sub 1}...K{sub n}) be a n-tuple of convex compact subsets in the Euclidean space R{sup n}...
The main result of this paper is an inequality relating the lattice point enumerator of a 3-dimensio...
We derive tight bounds for the maximum number of k-faces, 0 ≤ k ≤ d−1, of the Minkowski sum, P1 +P2,...
AbstractAt the turn of the century, Minkowski published his famous “convex body” theorem which becam...
AbstractAt the turn of the century, Minkowski published his famous “convex body” theorem which becam...
Let K be a bounded, open convex set in euclidean n-space R<SUB>n</SUB>, symmetric in the origin 0. F...
Abstract The Minkowski existence Theorem for polytopes follows from Cramer’s Rule when attention is ...
Die Dissertation behandelt zwei Gebiete der Geometrie endlichdimensionaler Banach-Räume (Minkowski-G...
One of the most fruitful results from Minkowski’s geometric viewpoint on number theory is his so cal...
Die Dissertation behandelt zwei Gebiete der Geometrie endlichdimensionaler Banach-Räume (Minkowski-G...
Abstract. Two new approaches are presented to establish the existence of polytopal so-lutions to the...
Abstract. Two new approaches are presented to establish the existence of polytopal so-lutions to the...
The objective of this dissertation is the application of Minkowskian cross-section measures (i.e., s...
AbstractMinkowski’s second theorem on successive minima gives an upper bound on the volume of a conv...
<p>We derive tight expressions for the maximum number of $k$-faces, $0\le{}k\le{}d-1$, of the Minkow...
Let K = (K{sub 1}...K{sub n}) be a n-tuple of convex compact subsets in the Euclidean space R{sup n}...
The main result of this paper is an inequality relating the lattice point enumerator of a 3-dimensio...
We derive tight bounds for the maximum number of k-faces, 0 ≤ k ≤ d−1, of the Minkowski sum, P1 +P2,...
AbstractAt the turn of the century, Minkowski published his famous “convex body” theorem which becam...
AbstractAt the turn of the century, Minkowski published his famous “convex body” theorem which becam...
Let K be a bounded, open convex set in euclidean n-space R<SUB>n</SUB>, symmetric in the origin 0. F...
Abstract The Minkowski existence Theorem for polytopes follows from Cramer’s Rule when attention is ...
Die Dissertation behandelt zwei Gebiete der Geometrie endlichdimensionaler Banach-Räume (Minkowski-G...
One of the most fruitful results from Minkowski’s geometric viewpoint on number theory is his so cal...
Die Dissertation behandelt zwei Gebiete der Geometrie endlichdimensionaler Banach-Räume (Minkowski-G...
Abstract. Two new approaches are presented to establish the existence of polytopal so-lutions to the...
Abstract. Two new approaches are presented to establish the existence of polytopal so-lutions to the...
The objective of this dissertation is the application of Minkowskian cross-section measures (i.e., s...
AbstractMinkowski’s second theorem on successive minima gives an upper bound on the volume of a conv...
<p>We derive tight expressions for the maximum number of $k$-faces, $0\le{}k\le{}d-1$, of the Minkow...
Let K = (K{sub 1}...K{sub n}) be a n-tuple of convex compact subsets in the Euclidean space R{sup n}...
The main result of this paper is an inequality relating the lattice point enumerator of a 3-dimensio...
We derive tight bounds for the maximum number of k-faces, 0 ≤ k ≤ d−1, of the Minkowski sum, P1 +P2,...