In a competitive world where products are designed to last for long periods of time, obtaining time-to-failure data is both difficult and costly. Hence for products with high reliability, accelerated life testing is required to obtain relevant life-data quickly. This is done by placing the products under higher-than-use stress levels, thereby causing the products to fail prematurely. Part of the analysis of accelerated life-data requires a life distribution that describes the lifetime of a product at a given stress level and a life-stress relationship – which is some function that describes the way in which the life distribution changes across different stress levels. In this thesis it is assumed that the underlying life distribution is the...