An abelian category with arbitrary coproducts and a small projective generator is equivalent to a module category (Mitchell (1964) [17]). A tilting object in an abelian category is a natural generalization of a small projective generator. Moreover, any abelian category with a tilting object admits arbitrary coproducts (Colpi et al. (2007) [8]). It naturally arises the question when an abelian category with a tilting object is equivalent to a module category. By Colpi et al. (2007) [8], the problem simplifies in understanding when, given an associative ring R and a faithful torsion pair (X, Y) in the category of right R-modules, the heart H(X, Y) of the t-structure associated with (X, Y) is equivalent to a category of modules. In this paper,...