Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schrödinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al. have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the...
A simple model of the quantum mechanics of a nucleating particle in the recently proposed string con...
We review in detail the construction of {\em all} stable static fermion bags in the 1+1 dimensional ...
The Gross-Neveu model in the $N \to \infty$ approximation in $d=1$ spatial dimensions exhibits a chi...
We present the detailed properties of a self-consistent crystalline chiral condensate in the massles...
We present the detailed properties of the phase diagrams of massless (1+1)-dimensional Gross-Neveu a...
We analyze the thermodynamical properties, at finite density and nonzero temperature, of the (1+1) d...
We present the detailed properties of the phase diagrams of massless (1+1)-dimensional Gross-Neveu a...
We present the detailed properties of the phase diagrams of massless (1+1)-dimensional Gross-Neveu a...
We derive a new exact self-consistent crystalline condensate in the (1+1)-dimensional chiral Gross-N...
We consider the close relation between duality in N=2 SUSY gauge theories and integrable models. Var...
Recently the revised phase diagram of the (large N) Gross-Neveu model in 1+1 dimensions with discret...
I consider a three-dimensional string theory whose action, besides the standard area term, contains ...
We describe how a generalization of the original Gross-Neveu model from U(N) to O(N) flavor symmetry...
The phase diagram of the $(1 + 1)$-dimensional Gross-Neveu model is reanalyzed for (non-)zero chemic...
We study an intersecting D-brane model which at low energies describes (1+1)-dimensional chiral ferm...
A simple model of the quantum mechanics of a nucleating particle in the recently proposed string con...
We review in detail the construction of {\em all} stable static fermion bags in the 1+1 dimensional ...
The Gross-Neveu model in the $N \to \infty$ approximation in $d=1$ spatial dimensions exhibits a chi...
We present the detailed properties of a self-consistent crystalline chiral condensate in the massles...
We present the detailed properties of the phase diagrams of massless (1+1)-dimensional Gross-Neveu a...
We analyze the thermodynamical properties, at finite density and nonzero temperature, of the (1+1) d...
We present the detailed properties of the phase diagrams of massless (1+1)-dimensional Gross-Neveu a...
We present the detailed properties of the phase diagrams of massless (1+1)-dimensional Gross-Neveu a...
We derive a new exact self-consistent crystalline condensate in the (1+1)-dimensional chiral Gross-N...
We consider the close relation between duality in N=2 SUSY gauge theories and integrable models. Var...
Recently the revised phase diagram of the (large N) Gross-Neveu model in 1+1 dimensions with discret...
I consider a three-dimensional string theory whose action, besides the standard area term, contains ...
We describe how a generalization of the original Gross-Neveu model from U(N) to O(N) flavor symmetry...
The phase diagram of the $(1 + 1)$-dimensional Gross-Neveu model is reanalyzed for (non-)zero chemic...
We study an intersecting D-brane model which at low energies describes (1+1)-dimensional chiral ferm...
A simple model of the quantum mechanics of a nucleating particle in the recently proposed string con...
We review in detail the construction of {\em all} stable static fermion bags in the 1+1 dimensional ...
The Gross-Neveu model in the $N \to \infty$ approximation in $d=1$ spatial dimensions exhibits a chi...