In engineering optimization with continuous variables, the use of Stochastic Global Optimization (SGO) algorithms is popular due to the easy availability of codes. All algorithms have a global and local search character, where the global behaviour tries to avoid getting trapped in local optima and the local behaviour intends to reach the lowest objective function values. As the algorithm parameter set includes a final convergence criterion, the algorithm might be running for a while around a reached minimum point. Our question deals with the local search behaviour after the algorithm reached the final stage. How fast do practical SGO algorithms actually converge to the minimum point? To investigate this question, we run implementations of w...