The recent increase in computation power and the ever-growing amount of data available ignited the rise in popularity of deep learning. However, the expertise, the amount of data, and the computing power necessary to build such algorithms as well as the memory footprint and the inference latency of the resulting system are all obstacles preventing the widespread use of these methods. In this thesis, we propose several methods allowing to make a step towards a more efficient and automated procedure to build deep learning models. First, we focus on learning an efficient architecture for image processing problems. We propose a new model in which we can guide the architecture learning procedure by specifying a fixed budget and cost function. Th...
L'apprentissage profond est une sous-discipline de l'intelligence artificielle en plein essor grâce ...
Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la techno...
The purpose of this thesis is to investigate one of the most important challenges related to the dev...
L'augmentation de la puissance de calcul et de la quantité de données disponible ont permis la monté...
This thesis deals with deep learning applied to image classification tasks. The primary motivation f...
Over the last decades, machine learning revolutionised our daily lives from recommendation systems t...
The last decade has seen the re-emergence of machine learning methods based on formal neural network...
Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il e...
Deep learning has achieved great success in many sequence learning tasks such as machine translation...
The purpose of this thesis is to investigate some of the challenges related to the development of de...
Abstract—Deep architectures have been used in transfer learning applications, with the aim of improv...
In this thesis, we examine some practical difficulties of deep learning models.Indeed, despite the p...
In this thesis, we study the dedicated computational approaches of deep neural networks and more par...
Redes neurais convolucionais têm atingido desempenho de estado da arte em diversas tarefas de visão ...
L'apprentissage profond est une sous-discipline de l'intelligence artificielle en plein essor grâce ...
Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la techno...
The purpose of this thesis is to investigate one of the most important challenges related to the dev...
L'augmentation de la puissance de calcul et de la quantité de données disponible ont permis la monté...
This thesis deals with deep learning applied to image classification tasks. The primary motivation f...
Over the last decades, machine learning revolutionised our daily lives from recommendation systems t...
The last decade has seen the re-emergence of machine learning methods based on formal neural network...
Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il e...
Deep learning has achieved great success in many sequence learning tasks such as machine translation...
The purpose of this thesis is to investigate some of the challenges related to the development of de...
Abstract—Deep architectures have been used in transfer learning applications, with the aim of improv...
In this thesis, we examine some practical difficulties of deep learning models.Indeed, despite the p...
In this thesis, we study the dedicated computational approaches of deep neural networks and more par...
Redes neurais convolucionais têm atingido desempenho de estado da arte em diversas tarefas de visão ...
L'apprentissage profond est une sous-discipline de l'intelligence artificielle en plein essor grâce ...
Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la techno...
The purpose of this thesis is to investigate one of the most important challenges related to the dev...