In the present study, the aerodynamic performance and flight stability of a two-dimensional (2D) canopy in a paraglider are optimized using a combination of response surface methodology (RSM) and a multi-objective genetic algorithm (MOGA) coupled with the unsteady Reynolds-averaged Navier-Stokes (URANS) equations solver. Compared to a 2D base case, an optimized canopy, featured by reduced airfoil thickness, shows an increase in the aerodynamic performance up to 18.9 % based on lift-to-drag ratio, while the flight stability is similar between them. An optimized three-dimensional (3D) canopy is constructed by duplicating the 2D canopy along the arc direction to identify the effects of the optimization on an actual 3D canopy. Based on large-ed...