It is widely accepted that classical logic is trivialized in the presence of a transparent truth-predicate. In this paper, we will explain why this point of view must be given up. The hierarchy of metainferential logics defined in Barrio et al. (Journal of Philosophical Logic, 1–28, 2019) and Pailos (The Review of Symbolic Logic, Forthcoming) recovers classical logic, either in the sense that every classical (meta)inferential validity is valid at some point in the hierarchy (as is stressed in Barrio et al. (Journal of Philosophical Logic, 1–28, 2019)), or because a logic of a transfinite level defined in terms of the hierarchy shares its validities with classical logic. Each of these logics is consistent with transparent truth—as is shown i...