We analyze the Fourier growth, i.e. the L? Fourier weight at level k (denoted L_{1,k}), of read-once regular branching programs. We prove that every read-once regular branching program B of width w ? [1,?] with s accepting states on n-bit inputs must have its L_{1,k} bounded by min{Pr[B(U_n) = 1](w-1)^k, s ? O((n log n)/k)^{(k-1)/2}}. For any constant k, our result is tight up to constant factors for the AND function on w-1 bits, and is tight up to polylogarithmic factors for unbounded width programs. In particular, for k = 1 we have L_{1,1}(B) ? s, with no dependence on the width w of the program. Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs). Furthermore, we obtain an explicit generator for unorder...