Electrical resistivity tomography is a non-linear and ill-posed geophysical inverse problem that is usually solved through gradient-descent methods. This strategy is computationally fast and easy to implement but impedes accurate uncertainty appraisals. We present a probabilistic approach to two-dimensional electrical resistivity tomography in which a Markov chain Monte Carlo algorithm is used to numerically evaluate the posterior probability density function that fully quantifies the uncertainty affecting the recovered solution. The main drawback of Markov chain Monte Carlo approaches is related to the considerable number of sampled models needed to achieve accurate posterior assessments in high-dimensional parameter spaces. Theref...