The Multi-access Edge Computing (MEC) paradigm increases the computational capabilities of distributed sensing architectures, such as Mobile CrowdSensing platforms, which are designed to collect heterogeneous data from the crowd by exploiting mobile devices. In this context, our work focusses on the impact of three community detection algorithms to our edge selection strategy. In particular, we study TILES, Infomap, and iLCD which are specifically designed to identify evolving communities of users in dynamic networks. Our analysis is based on the ParticipAct data set that offers real human mobility data. We first measure the quality of the data set during an observation period of 1 year, during which the data set provides the 75% of the exp...