The human voice is a product of an intricate biophysical system. The complexity of this system enables a rich variety of possible sounds, but at the same time poses great challenges for quantitative voice analysis. For example, the vocal folds can vibrate in several different ways, leading to variations in the acoustic output. Because the vocal folds are relatively inaccessible, such variations are often difficult to account for. This work proposes a novel method for extracting non-invasively information on the vibratory state of the human vocal folds. Such information is important for creating a more complete voice analysis scheme. Invasive methods are undesirable because they often disturb the subjects and/or the studied phenomena, and th...