Trabajo fin de Máster defendido en la Facultad de Ciencias de la Universidad de Cantabria, el 24 de junio de 2022 -Curso 2021-2022 - Máster Interuniversitario en Ciencia de Datos / Master in Data Science (UIMP-UC-CSIC)[EN] Generative adversarial networks (GANs) have been a breakthrough in the field of deep learning generative models. These are two neural networks that compete against each other in a zero-sum game of addition while improving as training progresses, each with the goal of beating the other. From this process it is possible to generate fake samples that mimic the real samples with high quality. The objective of this work is to implement a variant of the traditional GAN, the Wasserstein GAN (WGAN), in the context of high energy...
Initial studies have suggested generative adversarial networks (GANs) have promise as fast simulatio...
Uno de los ámbitos estudiados hoy en día por la Inteligencia Artificial es la generación de imágenes...
Various aspects of LHC simulations can be supplemented by generative networks. For event generation ...
Trabajo fin de Máster defendido en la Facultad de Ciencias de la Universidad de Cantabria, el 25 de ...
Generative Adversarial Networks (GANs) are nowadays able to produce highly realistic output, but a d...
El presente trabajo de fin de grado muestra la implementación de redes generativas adversarias (GANs...
The increasing luminosities of future data taking at Large Hadron Collider and next generation colli...
In this talk, I will present a Generative-Adversarial Network (GAN) based on convolutional neural ne...
In recent years, generative adversarial networks (GANs) have been proposed to generate simulated ima...
Experimental Particle Physics is in a golden era full of technological challenges. To overcome them,...
Las redes neuronales artificiales han experimentado una importante evolución práctica durante los úl...
Dentro del campo de la Inteligencia Artificial, la generación de imágenes es una parte muy desarroll...
The precise simulation of particle transport through detectors remains a key element for the success...
Deep Learning techniques are being studied for different applications by the HEP community: in this ...
Although Deep Neural Networks (DNNs) have state-of-the-art performance in various machine learning ...
Initial studies have suggested generative adversarial networks (GANs) have promise as fast simulatio...
Uno de los ámbitos estudiados hoy en día por la Inteligencia Artificial es la generación de imágenes...
Various aspects of LHC simulations can be supplemented by generative networks. For event generation ...
Trabajo fin de Máster defendido en la Facultad de Ciencias de la Universidad de Cantabria, el 25 de ...
Generative Adversarial Networks (GANs) are nowadays able to produce highly realistic output, but a d...
El presente trabajo de fin de grado muestra la implementación de redes generativas adversarias (GANs...
The increasing luminosities of future data taking at Large Hadron Collider and next generation colli...
In this talk, I will present a Generative-Adversarial Network (GAN) based on convolutional neural ne...
In recent years, generative adversarial networks (GANs) have been proposed to generate simulated ima...
Experimental Particle Physics is in a golden era full of technological challenges. To overcome them,...
Las redes neuronales artificiales han experimentado una importante evolución práctica durante los úl...
Dentro del campo de la Inteligencia Artificial, la generación de imágenes es una parte muy desarroll...
The precise simulation of particle transport through detectors remains a key element for the success...
Deep Learning techniques are being studied for different applications by the HEP community: in this ...
Although Deep Neural Networks (DNNs) have state-of-the-art performance in various machine learning ...
Initial studies have suggested generative adversarial networks (GANs) have promise as fast simulatio...
Uno de los ámbitos estudiados hoy en día por la Inteligencia Artificial es la generación de imágenes...
Various aspects of LHC simulations can be supplemented by generative networks. For event generation ...