Scientific computations and analytical business applications are often based on linear algebra operations on large, sparse matrices. With the hardware shift of the primary storage from disc into memory it is now feasible to execute linear algebra queries directly in the database engine. This paper presents and compares different approaches of storing sparse matrices in an in-memory column-oriented database system. We show that a system layout derived from the compressed sparse row representation integrates well with a columnar database design and that the resulting architecture is moreover amenable to a wide range of non-numerical use cases when dictionary encoding is used. Dynamic matrix manipulation operations, like online insertion or de...