Real-world optimization scenarios under uncertainty and noise are typically handled with robust optimization techniques, which re-formulate the original optimization problem into a robust counterpart, e.g., by taking an average of the function values over different perturbations to a specific input. Solving the robust counterpart instead of the original problem can significantly increase the associated computational cost, which is often overlooked in the literature to the best of our knowledge. Such an extra cost brought by robust optimization might depend on the problem landscape, the dimensionality, the severity of the uncertainty, and the formulation of the robust counterpart.This paper targets an empirical approach that evaluates and co...