Youth in the American foster care system are significantly more likely than their peers to face a number of negative life outcomes, from homelessness to incarceration. Administrative data on these youth have the potential to provide insights that can help identify ways to improve their path towards a better life. However, such data also suffer from a variety of biases, from missing data to reflections of systemic inequality. The present work proposes a novel, prescriptive approach to using these data to provide insights about both data biases and the systems and youth they track. Specifically, we develop a novel categorical clustering and cluster summarization methodology that allows us to gain insights into subtle biases in existing data o...