Part 1: Machine Learning (ML), Deep Learning (DL), Internet of Things (IoT)International audienceOne of the most critical challenges facing banking institutions is customer churn, as it dramatically affects a bank’s profits and reputation. Therefore, banks use customer churn forecasting methods when selecting the necessary measures to reduce the impact of this problem. This study applied data mining techniques to predict customer churn in the banking sector using three different classification algorithms, namely: decision tree (J48), random forest (RF), and neural network (MLP) using WEKA. The Results showed that J48 had an overall superior performance over the five performance measures, compared to other algorithms using the 10-fold cross-...