International audienceThe ever-increasing demands for autonomy and precision have led to the development of heavily computational multi-robot system (MRS). However, numerous missions exclude the use of robotic cloud. Another solution is to use the robotic cluster to locally distribute the computational load. This complex distribution requires adaptability to come up with a dynamic and uncertain environment. Classical approaches are too limited to solve this problem, but recent advances in reinforcement learning and deep learning offer new opportunities. In this paper we propose a new Deep Q-Network (DQN) based approaches where the MRS learns to distribute tasks directly from experience. Since the problem complexity leads to a curse of dimen...