We extend our approach for verifying properties of graph transformation systems using suitable abstractions. In the original approach properties are specified as formulae of a propositional temporal logic whose atomic predicates are monadic second-order graph formulae. We generalize this aspect by considering more expressive logics, where edge quantifiers and temporal modalities can be interleaved, a feature which allows, e.g., to trace the history of objects in time. After characterizing fragments of the logic which can be safely checked on the approximations, we show how the verification of the logic over graph transformation systems can be reduced to the verification of a logic over suitably defined Petri nets