International audienceIn this contribution we present a method to directly compute asymptotic expansion of invariant manifolds of large finite element models from physical coordinates and their reduced order dynamics on the manifold. We show the accuracy of the reduction method on selected models, exhibiting large rotations and internal resonances. The results obtained with the reduction compared to full-order harmonic balance simulations show that the proposed methodology can reproduce extremely accurately the dynamics of the original systems with a very low computational cost
International audienceThe direct parametrisation method for invariant manifolds is used for model or...
What's new in SSMTool 2.4 Computation of higher-order approximations to non-autonomous invariant ...
International audienceDimensionality reduction in mechanical vibratory systems poses challenges for ...
International audienceIn this contribution we present a method to directly compute asymptotic expans...
Invariant manifolds are important constructs for the quantitative and qualitative understanding of n...
This paper investigates model-order reduction methods for geometrically nonlinear structures. The pa...
International audienceDimensionality reduction through parametrisation of the system motion along a ...
International audienceThis paper aims at reviewing nonlinear methods for model order reduction of st...
SSMTool 2.2: Computation of invariant manifolds in high-dimensional mechanics problems This package...
The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which d...
The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which d...
The direct parametrisation method for invariant manifolds is used for model order reduction of force...
What's new in SSMTool 2.4 Computation of higher-order approximations to non-autonomous invariant ...
International audienceThe direct parametrisation method for invariant manifolds is used for model or...
What's new in SSMTool 2.4 Computation of higher-order approximations to non-autonomous invariant ...
International audienceDimensionality reduction in mechanical vibratory systems poses challenges for ...
International audienceIn this contribution we present a method to directly compute asymptotic expans...
Invariant manifolds are important constructs for the quantitative and qualitative understanding of n...
This paper investigates model-order reduction methods for geometrically nonlinear structures. The pa...
International audienceDimensionality reduction through parametrisation of the system motion along a ...
International audienceThis paper aims at reviewing nonlinear methods for model order reduction of st...
SSMTool 2.2: Computation of invariant manifolds in high-dimensional mechanics problems This package...
The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which d...
The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which d...
The direct parametrisation method for invariant manifolds is used for model order reduction of force...
What's new in SSMTool 2.4 Computation of higher-order approximations to non-autonomous invariant ...
International audienceThe direct parametrisation method for invariant manifolds is used for model or...
What's new in SSMTool 2.4 Computation of higher-order approximations to non-autonomous invariant ...
International audienceDimensionality reduction in mechanical vibratory systems poses challenges for ...