International audienceIt is well known that a particle put into an ultrasonic standing wave tends to move towards an equilibrium position, where the acoustic pressure-induced force on its surface compensates the particle weight. We demonstrate, by means of a full three-dimensional numerical analysis and a thorough experimental study, that the acoustic force, and thus the particle's behavior, critically depends on its size. While particles within certain size ranges, including those smaller than half the wavelength, are trapped on axis around the pressure nodes, particles in other size ranges are trapped off axis nearby the pressure antinodes. This behavior, related with sign inversions of the radiation force, implies that the magnitude of t...