Decidability and complexity of the satisfiability problem for the logics of time intervals have been extensively studied in the recent years. Even though most interval logics turn out to be undecidable, meaningful exceptions exist, such as the logics of temporal neighborhood and (some of) the logics of the subinterval relation. In this paper, we explore a different path to decidability: instead of restricting the set of modalities or imposing severe semantic restrictions, we take the most expressive interval temporal logic studied so far, namely, Venema's CDT, and we suitably limit the negation depth of modalities. The decidability of the satisfiability problem for the resulting fragment, called CDT_BS, over the class of all linear orders, ...