Suitable extensions of monadic second-order theories of k successors have been proposed in the literature to specify in a concise way reactive systems whose behaviour can be naturally modeled with respect to a (possibly infinite) set of differently-grained temporal domains. This is the case, for instance, of the wide-ranging class of real-time reactive systems whose components have dynamic behaviours regulated by very different time constants, e.g., days, hours, and seconds. In this paper, we focus on the theory of k-refinable downward unbounded layered structures MSO[<_{tot},(\downarrow_i)_{i=0}^{k-1}], that is, the theory of infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains,...