We study a generalisation of Moran's population-genetic model that incorporates density dependence. Rather than assuming fixed population size, we allow the number of individuals to vary stochastically with the same events that change allele number, according to a logistic growth process with density dependent mortality. We analyse the expected time to absorption and fixation in the 'quasi-neutral' case: both types have the same carrying capacity, achieved through a trade-off of birth and death rates. Such types would be competitively neutral in a classical, fixed-population Wright-Fisher model. Nonetheless, we find that absorption times are skewed compared to the Wright-Fisher model. The absorption time is longer than the Wright-Fisher pre...