In the setting of antiplane linearized elasticity, we show the existence of quasistatic evolutions of cracks in brittle materials by using a vanishing viscosity approach, thus taking into account local minimization. The main feature of our model is that the path followed by the crack need not be prescribed a priori: indeed, it is found as the limit (in the sense of Hausdorff convergence) of curves obtained by an incremental procedure. The result is based on a continuity property for the energy release rate in a suitable class of admissible cracks
Abstract. We present an approach to study the path of a crack growing in a quasistatic regime in a b...
We study the existence of quasistatic evolutions for a family of gradient damage models which take i...
The focus of this note lies on the numerical analysis of models describing the propagation of a si...
We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity by a va...
We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity obtaine...
Abstract. We describe an existence result for quasistatic evolutions of cracks in antiplane elastici...
Employing the technique of vanishing viscosity and time rescaling, we show the existence of quasista...
In the setting of planar linearized elasticity, we study a fracture model depending on the crack ope...
We introduce a new model of irreversible quasistatic crack growth in which the evolution of cracks i...
The focus of this note lies on the numerical analysis of models describing the propagation of a sing...
We study the evolution of a single crack in an elastic body and assume that the crack path is known ...
This paper is devoted to prove the existence of strong solutions for a brittle fracture model of qua...
We consider the propagation of a crack in a brittle material along a prescribed crack path and defin...
We consider the propagation of a crack in a brittle material along a prescribed crack path and defin...
We consider the propagation of a crack in a brittle material along a prescribed crack path and defin...
Abstract. We present an approach to study the path of a crack growing in a quasistatic regime in a b...
We study the existence of quasistatic evolutions for a family of gradient damage models which take i...
The focus of this note lies on the numerical analysis of models describing the propagation of a si...
We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity by a va...
We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity obtaine...
Abstract. We describe an existence result for quasistatic evolutions of cracks in antiplane elastici...
Employing the technique of vanishing viscosity and time rescaling, we show the existence of quasista...
In the setting of planar linearized elasticity, we study a fracture model depending on the crack ope...
We introduce a new model of irreversible quasistatic crack growth in which the evolution of cracks i...
The focus of this note lies on the numerical analysis of models describing the propagation of a sing...
We study the evolution of a single crack in an elastic body and assume that the crack path is known ...
This paper is devoted to prove the existence of strong solutions for a brittle fracture model of qua...
We consider the propagation of a crack in a brittle material along a prescribed crack path and defin...
We consider the propagation of a crack in a brittle material along a prescribed crack path and defin...
We consider the propagation of a crack in a brittle material along a prescribed crack path and defin...
Abstract. We present an approach to study the path of a crack growing in a quasistatic regime in a b...
We study the existence of quasistatic evolutions for a family of gradient damage models which take i...
The focus of this note lies on the numerical analysis of models describing the propagation of a si...